Optimizing long-term water allocation in the Amudarya River delta: a water management model for ecological impact assessment
نویسندگان
چکیده
In the semi-arid Amudarya delta region (Aral Sea Basin) the human-controlled hydrological regime is a major factor influencing ecosystem dynamics. Alterations to the flow of the Amudarya river, mainly to serve the needs of irrigated agriculture during Soviet times, have caused severe environmental degradation. Since independence, the former Soviet Union states of the basin are searching for new, ecologically sound, water management strategies to mitigate the damages to economy, human populations and ecosystems. To assist in the evaluation of tradeoffs in water allocation and the determination of restoration goals, we created a simple water management model for the Amudarya river and its delta region with the modeling system EPIC (originally developed by the USAID project " Environmental Policies and Institutions for Central Asia "). The water management model determines optimal water allocation in the irrigation network by multi-objective optimization in monthly time steps. Water management alternatives can be developed for a time period of up to 15 years based on changing requirements of the water users (e.g. as a result of increased water use efficiency in agriculture), inflow to the delta (e.g. increase in water use upstream), priorities of the optimization criteria (e.g. reflecting policy decisions) or introducing minimum flow requirements to selected canals. Historic salt dynamics of the Tyuyamuyun reservoir system at the entrance to the Amudarya delta were investigated and EPIC was extended to treat such multi-body reservoir systems. The model was calibrated and tested using a high water (1994) and a low water (1997) year. Modeled water allocation takes place in accordance with observational data. The model reacts well to changes in allocation priorities given by the user. Application of the model to a 14-year characteristic time period was successful. The model constitutes a main module of an integrated GIS-based simulation tool that facilitates the evaluation of the ecological effects of alternative water management strategies in the Northern Amudarya delta.
منابع مشابه
Application of a GIS-based Simulation Tool to Analyze and Communicate Uncertainties in Future Water Availability in the Amudarya River Delta
Simulation and decision support tools facilitate a process of reasoning about potential future development paths of a system, e.g. a river system, under alternative management strategies. Joint scenario development and analysis with river basin authorities and stakeholders can inform and structure discussions on management goals and major uncertainties affecting river basin management in future...
متن کاملMechanisms of Resilience in Common-pool Resource Management Systems: an Agent-based Model of Water Use in a River Basin
The concept of resilience is widely promoted as a promising notion to guide new approaches to ecosystem and resource management that try to enhance a system's capacity to cope with change. A variety of mechanisms of resilience specific for different systems have been proposed. In the context of resource management those include but are not limited to the diversity of response options and flexib...
متن کاملImpact of structural geology on integrated water resources modeling improvement; a case study of Garesoo river basin, in Doab-Merek station, Kermanshah, Iran
Garesoo river basin in Doab-Merek, as studying area of this research, located in northwest of Kermanshah province in west part of Iran. There is long-term hydro climatologic data in this basin about rainfall, temperature, etc. (more than 50 years) and main river data (about 35 years). Due to intense fall down groundwater level and seasonal river drying, in the past 10 years .It was necessary th...
متن کاملModeling of Non-Point Source Pollution by Long-Term Hydrologic Impact Assessment (L-THIA) (Case Study: Zayandehrood Watershed) in 2015
Background & Aims of the Study: In this research, Long-Term Hydrologic Impact Assessment model is selected for simulation of runoff and NPS pollution. The aim of this study is modeling of non-point source pollution by L-THIA model in Zayandehrood watershed in 2015. Materials & Methods: In this study, analytical survey and investigation of references in the context of libr...
متن کاملEcological and Toxicological Conditions in the Delta Volga River
The decrease in the level of industrial production and the significant reduction of highly toxic substances used in the agriculture of the Volga region in the last decade did not maintain the expected decrease of pollution level in the Volga water. Concentration of many polluting substances in water continues to remain high. Among the numerous polluting substances in the Volga River two groups ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental Modelling and Software
دوره 20 شماره
صفحات -
تاریخ انتشار 2005